®

Progress Kendo U

Functional Programming
with JavaScript (ES6)

CHEAT SHEET

Functional programming is a style that freats computation as the evaluation of
mathematical functions and avoids changing-state and mutable data.

Arrow Functions (Fat Arrows)

Arrow functions create a concise expression that encapsulates a small piece of functionality. Additionally,
arrows retain the scope of the caller inside the function eliminating the need of self = this.

Example

// const multiply = function(x,y) {
// return x * y;

/1 }

// Can be rewritten as:
// const multiply = (x, y) => { return x * y };

// Since the function is a single expression return and braces are not
needed.

const multiply = (x, y) => x * y;

console.log(multiply(5,10)) //50

To the editor (stackblitz.com)

Progress / Kendo Ul

https://www.progress.com/
https://www.telerik.com/kendo-ui
https://stackblitz.com/edit/arrows-and-fat-arrows

Function Delegates

Function delegates encapsulate a method allowing functions to be composed or passed as data.

Example

const isZero = n => n === 0;

const a = [90,1,0,3,4,0];
console.log(a.filter(isZero).length); // 3

To the editor (stackblitz.com)

Expressions Instead of Statements

Statements define an action and are executed for their side effect. Expressions produce a result without
mutating state.

Statement

const getSalutation = function(hour) {
var salutation; // temp value
if (hour < 12) {

salutation = "Good Morning";
¥
else {
salutation = "Good Afternoon"
¥
return salutation; // mutated value
¥
Expression

const getSalutation = (hour) => hour < 12 ?
"Good Morning" : "Good Afternoon";

console.log(getSalutation(10)); // Good Morning

To the editor (stackblitz.com)

Progress / Kendo Ul

https://www.progress.com/
https://www.telerik.com/kendo-ui
https://stackblitz.com/edit/function-delegates
https://stackblitz.com/edit/expressions-over-statements

Higher Order Functions

A function that accepts another function as a parameter, or returns another function

Example

function mapConsecutive(values, fn) {
let result = [];
for(let i=0; i < values.length -1; i++) {
result.push(fn(values[i], values[i+1]));

}

return result;

}

const letters = ['a','b"','c','d",'e","f',"'g"];

let twoByTwo = mapConsecutive(letters, (x,y) => [x,v1);
console.log(twoByTwo);

/7 [la,b], [b,c], [c,d], [d,e], [e,f], [f,g]]

To the editor (stackblitz.com)

Currying

Currying allows a function with multiple arguments to be translated into a sequence of functions. Curried
functions can be tailored to match the signature of another function.

Example

const convertUnits = (toUnit, factor, offset = 0) => input =>
((offset + input) * factor).toFixed(2).concat(toUnit);

const milesToKm = convertUnits('km', 1.60936, 0);

const poundsToKg = convertUnits('kg', ©.45460, 0);

const farenheitToCelsius = convertUnits('degrees C', 0.5556, -32);
milesToKm(10); //"16.09 km"

poundsToKg(2.5); //"1.14 kg"

farenheitToCelsius(98); //"36.67 degrees C"

const weightsInPounds = [5,15.4,9.8, 110];

Progress / Kendo Ul

https://www.progress.com/
https://www.telerik.com/kendo-ui
https://stackblitz.com/edit/higher-order-function

// without currying

// const weightsInKg = weightsInPounds.map(x => convertUnits('kg', ©.45460,
0)(x));

// with currying

const weightsInKg = weightsInPounds.map(poundsToKg);
// 2.27kg, 7.00kg, 4.46kg, 50.01kg

To the editor (stackblitz.com)

Array Manipulation Functions

Array Functions are the gateway fo functional programming in JavaScript. These functions make short work of
most imperative programming routines that work on arrays and collections.

[1.every(fn)
Checks if all elements in an array pass a test.

[].some(fn) | [].includes(fn)
Checks if any of the elements in an array pass a test.

[1.find(fn)
Returns the value of the first element in the array that passes a test.

[1.filter(fn)
Creates an array filled with only the array elements that pass a test.

[1.map(fn)
Creates a new array with the results of a function applied to every element in the array.

[1.reduce(fn(accumulator, currentValue))
Executes a provided function for each value of the array (from left-to-right). Returns a single value, the accumulator.

[]1.sort(fn(a,b)) warning, mutates state!
Modifies an array by sorfing the items within an array. An optional compare function can be used o customize sort
behavior. Use the spread operator to avoid mutation. [...arr].sort()

[1.reverse() warning, mutates state!

Reverses the order of the elements in an array. Use the spread operator o avoid mutation. [...arr].reverse()

To the editor (stackblitz.com)

Progress / Kendo Ul

https://www.progress.com/
https://www.telerik.com/kendo-ui
https://stackblitz.com/edit/currying
https://stackblitz.com/edit/array-manipulation-functions

Method Chaining

Method chains allow a series of functions to operate in succession to reach a final result. Method chains allow
function composition similar to a pipeline.

Example

let cart = [{name: "Drink", price: 3.12},
{name: "Steak", price: 45.15},
{ name: "Drink", price: 11.01}];

let drinkTotal = cart.filter(x=> x.name === "Drink")
.map(x=> x.price)
.reduce((t,v) => t +=v)
.toFixed(2);

console.log(Total Drink Cost $${drinkTotal}); // Total Drink Cost $14.13

To the editor (stackblitz.com)

Pipelines

A pipeline allows for easy function composition when performing multiple operations on a variable. Since
JavaScript lacks a Pipeline operator, a design pattern can be used to accomplish the task.

Example

const pipe = functions => data => {
return functions.reduce(
(value, func) => func(value),
data
)s
¥

let cart = [3.12, 45.15, 11.01];
const addSalesTax = (total, taxRate) => (total * taxRate) + total;

const tally = orders => pipe([
x => x.reduce((total, val) => total + val), // sum the order
x => addSalesTax(x, 0.09),
X => "Order Total = ${x.toFixed(2)} // convert to text

1) (orders); // Order Total = 64.62

To the editor (stackblitz.com)

Progress / Kendo Ul

https://www.progress.com/
https://www.telerik.com/kendo-ui
https://stackblitz.com/edit/method-chaining
https://stackblitz.com/edit/pipelines

Author

Ed Charbeneau

Ed is a Microsoft MVP and an internationally recognized
online influencer, speaker, writer, a Developer Advocate
for Progress, and expert on all things web development.
Ed enjoys geeking out fo cool new tech, brainstorming
about future technology, and admiring great design.

This resource is brought to you by Kendo Ul

Kendo Ul allows you to quickly build eye-catching, high-quality, high-performance responsive web-based
apps integrated into your fechnology of choice (jQuery, Angular, React, or Vue). Kendo Ul offers a large
library of popular components from sophisticated grids and charts to basic buttons and menus. Access 70+
customizable Ul components o speed up your development time by up to 50%.

@ Try Kendo Ul

Worldwide Headquarters

Progress, 14 Oak Park, Bedford, MA 01730 USA
Tel: +1 781 280-4000 Fax:+1 781 280-4095

On the Web at:
Find us on @facebook.com/progresssw @twitter.com/progresssw @youtube.com/progresssw

For regional international office locations and contact information,

please go to

Progress and Kendo Ul are trademarks or registered tfrademarks of Progress Software Corporation and/or one of its subsidiaries or affiliates in the U.S. and/or other

o]
@
2
f}
A
[}

=
wn
o

<
g’\

=

<

countries. Any other frademarks contained herein are the property of their respective owners.

© 2018 Progress Software Corporation and/or its subsidiaries or affiliates. All rights reserved.

Rev 2018/03 | RITMOO016138

» Progress’

https://www.progress.com/
https://www.telerik.com/kendo-ui
https://www.telerik.com/kendo-ui?utm_medium=pdf&utm_source=whitepaper&utm_campaign=kendo-ui-jquery-jscheatsheet-es6
https://www.telerik.com/kendo-ui?utm_medium=pdf&utm_source=whitepaper&utm_campaign=kendo-ui-jquery-jscheatsheet-es6

